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Predictions for pionic decays of resonances to the 

low-lying baryon 56 or meson 35 are shown to follow from 

general model-independent algebraic properties. All models 

in which transition operators change the state of only a single 

quark allow only two partial waves for the decay pion and 

give SU(6)w relations between decays in each partial wave, 

while not necessarily relating different partial waves. 
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There have recently been a number of treatments of pionic 

decays of hadron resonances using modified quark models. 
1 

The failure 

of the simplest version’ to predict experimental decays of hadrons which 

contain orbital excitation3 has led to a search for symmetry-breaking 

mechanisms. However, different formulations have led to very similar 

results, suggesting that there is some underlying principle common to 

all approaches. The purpose of this paper is to demonstrate this 

underlying principle explicitly and to show that all models having the 

same basic algebraic properties must give the same results. 

We consider the decay of a hadron classified in a 

representation4 of SU(6) X O(3) with orbital angular momentum L to a 

hadron state in the low-lying 35 or 56 supermultiplets with L = 0 by 

emission of a pion with angular momentum J. We consider constituent 

quarks 5 only in our analysis and assume that hadrons are classified in 

pure representations of SU(6) X O(3). as is common in all treatments 

based on constituent quarks. Our results thus apply to all treatments 

in which the final calculation is done in the constituent quark basis. 

The interesting cases where difficulties arise are those 

where more than one partial wave is allowed for the decay pion; i. e., 

more than one value of J can occur. Three kinds of experimental 

predictions have been obtained: 

i. Relations between decays having the same value of J 

from different members of the same SU(6) X O(3) supermultiplet. 
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2. Relations between decays having different values of J, 

in particular relations between different partial waves in the same decay, 

This includes relative phases of different partial wave amplitudes, which 

are measured directly by helicity amplitudes. 

3. Selection rules forbidding certain partial waves. 

It is the second type of prediction, relations between partial 

waves, which has led to disagreement with experiment. The first cases 

where two partial waves are allowed in the same decay arose in the decays 

of the axial vector mesons, 
3 

Al and B. Here the simplest version of the 

quark model gave strong disagreement with experiment. There have been 

many prescriptions to give additional freedom to the model to avoid this 

disagreement. However, all of them still seem to give identical predictions 

of the first type, which relate decays having the same value of J. 

Predictions of the third type have not been considered seriously, because 

the selection rules are trivially satisfied in the decays of low-lying states. 

Nontrivial tests of these selection rules for higher resonances are 

discussed below. 

We shall now see how different theoretical models all give 

the same predictions of the first type and the same selection rules. The 

basic assumption common to all approaches is the Levin-Frankfurt’ 

assumption that the transition matrix element is given by additive 

cant ributions from individual quarks. Such an additive single-quark 

operator transforms 
7 

under SU(6) like a member of a 35. The particular 

member of the 35 is determined uniquely by the charge of the emitted 
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pion and the following spin considerations. A single quark operator can 

flip only one quark spin and must transform under rotations in quark spin 

space only like a scalar or a vector, but not like any higher tensor. 

Parity conservation excludes the scalar, as shown below. This quark 

spin restriction can be called the AS = 1 rule. The cant ributions of 

different components of the spin vector are determined by the coupling of 

the spin part of the transition operator to the orbital part to obtain the 

total angular momentum J. In this discussion we are using ordinary 

S-spin, not W-spin. - The consequences of this SU(6) structure and AS = 1 

rule, when combined with the constraints from angular momentum and 

parity conservation and the sU(6) wave functions used in all treatments, 

are conveniently expressed by the following theorem: 

Theorem: If the pionic decays of resonances classified in 

a given SU(6) X O(3) supermultiplet with orbital angular momentum L to 

a 35 or 56 supermultiplet with L = 0 are described by an operator which 

transforms like a vector in quark spin space and a 35 in sU(6). 

1. Only two partial waves are allowed for the decay pion, 

J=LtlandJ=L-1. 

2. There are only two independent transition matrix 

elements for all the decays of the entire supermultiplet, one for each 

partial wave. 

3. All decays for a given value of J are related by 

SU(6) X O(3) Clebsch-Gordan coefficients. 



5 

The proof of the theorem is straightforward. We write the 

transition operator as a product of a factor which acts on the SU(6) degrees 

of freedom and a factor which acts on the orbital degrees of freedom, 

(1mL’ - m ) JO) U TL’ 
m -m 

where Mi describes the emission of a pion with angular momentum J and 

projection zero on the z-axis, Um is an operator which acts in the SU(6) 

degrees of freedom and transforms under rotations like a vector with 

projection m on the z-axis, and T 
L’ 
m 

IS an operator which acts in the 

orbital space and transforms under rotations like an irreducible tensor 

of degree L’ and projection m. The operators U and T are coupled 

with Clebsch-Gordan coefficients to a total angular momentum of J to 

insure conservation of angular momentum in the emission of a pion of 

angular momentum J. 

Since the initial state has orbital angular momentum L and 

the final hadron has zero orbital angular momentum only the single value 

L’ = L can contribute to the transition. Conservation of total angular 

momentum then gives the triangular inequality, 

IJ - LJ < 1. (2) 

All known sU(6) X O(3) multiplets have natural orbital parity. 
8 

Thus the parity change in the transition is even or odd when L is even or 

odd, respectively. Since the outgoing pion wave always has unnatural 

parity, conservation of parity excludes J = L. Thus there are only two 

allowed values of J for the transition operator (1); namely, J = L t 1 

andJ=L- 1. 



6 

The value of the transition matrix element of an operator of 

the form (1) for a given value of J between two states which are members 

of SU(~) X O(3) supermultiplets is given by the Wigner-Eckart theorem in 

terms of a reduced matrix element and Clebsch-Gordan coefficients for 

w(6) x o(3). There is only one reduced matrix element for each value of 

J. Since only two values of J are allowed, only two independent reduced 

matrix elements arise in the consideration of all possible decay modes 

for all states in a given Su(6) X O(3) supermultiplet to all states in a given 

SU(~) X O(3) supermultiplet with L = 0. This completes the proof of the 

theorem. 

In the simplest formulations,2 only one independent transition 

matrix element appears. Such formulations either assume W spin 

conservation, separate conservation of L and S 
z z’ 

or neglect ‘I recoil” 

terms9 in the quark description. In all these cases this additional 

assumption relates the matrix elements for the two allowed partial waves. 

The relation is that imposed by conservation of L as an additional 
z 

assumption. 

In the W-spin formulation, there is only a single reduced 

matrix element, because the transition operator is required by W-spin 

conservation to transform under W-spin like the emitted pion. The pion 

has W = 1, W 
z 

= 0; thus the transition operator has S = 0 and therefore 
z 

Ls = 0 since it must have J 
z 

= 0. This chooses a particular mixture of 

the two allowed partial waves in cases where both are allowed by angular 

momentum conservation. 
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When these treatments led to disagreement with experiment, 

showing that L 
z 

conservation was violated, attempts were made to relax 

the assumptions of the simple model to allow for violation of L 
z 

conservation. However, all these new treatments, as well as the old 

formulation which included recoil terms 
9 

satisfy the conditions of the 

above theorem. They therefore lead to the same results; namely that 

two partial waves are allowed, and that their matrix elements are 

independent of one another. However, the matrix elements for each 

partial wave are still related in the same manner as in the simple 

treatment. 

The treatment by Faiman and Plane’ which assumed SU(~)W 

relations for each of the two partial waves independently and dropped the 

relation between partial waves imposed by SU(6)w is seen to be the most 

general treatment which satisfies the condition of the theorem. This is 

because the theorem defines a unique set of relations between transition 

matrix elements for each allowed partial wave. Any formulation which 

satisfies the conditions of the theorem must predict the same set of 

relations. Note that our treatment considers only the transition matrix 

element and does not include phase space and barrier factors which 

reflect symmetry breaking due to mass differences. Differences between 

recipes for treating these kinematic factors can give rise to differences 

between results in different treatments. The transition matrix elements, 

however, must satisfy the conditions imposed by the theorem. 
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There have been attempts to find smaller groups than SU(~) 

under which the transition amplitude might be invariant. However, as long 

as the transition operator is a single quark operator and has no components 

which transform under spin rotations like higher order tensors than vectors, 

the above theorem still applies. The restriction of the domain of validity 

to a smaller subgroup of SU(~) X O(3) implies breaking of Su(6) X O(3) in 

the hadron wave functions, so that only the classification in the smaller 

subgroup is valid. The only effects of the smaller group would be 

(1) restriction of the use of the Wigner-Eckart theorem to the smaller 

supermultiplets of the subgroup, or (2) introduction of a relation between 

the two allowed partial wave amplitudes which might be different from the 

one given by SU(~)W. However, the transition matrix elements for each 

partial Wave remain related within the supermultiplets of the smaller 

group in exactly the same way as in all other treatments satisfying the 

conditions of the above theorem; e.g., the SU(~)W treatment. 

We can now distinguish between experimental predictions 

which test the details of a given model and those which follow only from 

the SU(~) structure and AS = 1 rule and are obtained from all models. 

The only predictions which do not follow from the SU(~) structure and 

AS = 1 rule are those relating the relative magnitude and relative phase 

of the two partial waves. Thus any new model has only this single complex 

number to fit; i. e., two real parameters for each su(6) X O(3) supermultiplet. 

There is therefore no point in presenting extensive tables of predictions 

and data with each new model; the main part of the information in the 
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table merely tests the sU(6) structure and AS = i rule. The best test is 

to combine the data to get the best value for the two parameters and 

compare these with the predictions of the model. A more detailed model 

may also predict relations between decays from different SU(6) X O(3) 

supermultiplets. These predictions also go beyond the SU(6) structure 

and AS = 1 rule and test the model. 

There is also interest in testing the SU(6) structure and 

AS = 1 rule itself, particularly since serious disagreement here can throw 

out all models. In addition to the SU(6)w relations relating all decays of a 

given partial wave, there are also predictions of relative phases of the 

two partial waves in the same decay. The relative phase between the two 

partial waves is a single parameter left free by the SU(6) structure and 

AS = 1 rule. Once it is determined in a single decay, it must be the same 

for all decays. Thus if the relative phases of the two partial waves are 

known experimentally for several de cays, checking whether they are all 

fit by the same parameter tests the SU(6) structure and AS = 1 rule. 

The selection rule restricting decays to two partial waves 

can also test the AS = 1 rule. This selection rule is trivial for meson 

decays, where more than two partial waves are not possible in any case. 

For baryon decays the selection rule is nontrivial for decays to J = $ final 

states from initial states with J = L + t and J = L - $. The decays of these 

states by emitting a pion with J = L + 3 and L - 3, respectively, are 

forbidden by this selection rule. For L = i decays, J = 0 and 2 (s-waves 

and d-waves) are allowed for the decay pion by this selection rule. The only 
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case where another J is allowed by angular momentum conservation is 

in the decay of a $‘ baryon to a $ 
t 

state, where J = 2 and J = 4 are both 

allowed. The selection rule forbids J = 4. This case is not a very 

sensitive test of the model, since centrifugal barriers also suppress 

J = 4. The L = 3 case would provide the first interesting test of the 

selection rule. Here the s-wave decay t- -+ f 
+. 

1s forbidden, while the 

d-wave decay is allowed, and the centrifugal barrier suppresses the 

allowed decay mode. 

A similar approach can be used for photon decays and 

excitations of resonances in the quark model. However, there are more 

partial waves for an emitted photon than for an emitted pion because of 

the spin of the photon. For a resonance having a given value of L, the 

angular momentum of the photon can be J = L - 1, L, or L t 1 in a single 

quark transition. The value J = L is no longer excluded as in the pion 

case by parity conservation. For J = L there are single quark transitions 

with AS = 0 allowed as well as AS = 1. Thus there are four independent 

reduced matrix elements for decay by photon emission, three AS = 1 with 

J = L - 1, L and L t 1 and one AS = 0 with J = L. These may be reduced to a 

smaller number by additional assumptions from specific models. However, 

the SU(6) structure allows all four. 

The same approach can be extended to treat the case of 

decays to states having L # 0. The angular momentum couplings are 

more complicated and there are more allowed partial waves and reduced 



matrix elements. The general case for pionic decays to states of 

arbitrary L has been considered by Gilman, Kugler and Meshkov In 5 

the context of their specific model. Their results should hold for all 

models having the same SU(~) structure and satisfying the AS = 1 rule. 

It is a pleasure to acknowledge stimulating and 

illuminating discussions with F. J. Gilman, M. Kugler and S. Meshkov. 
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